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BACKGROUND: Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify
the point of departure for risk assessment. A probabilistic framework for dose–response assessment has been proposed and advocated by various insti-
tutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose–
response assessment.

OBJECTIVES:We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental
Protection Agency’s (EPA’s) Benchmark Dose Software (BMDS).

METHODS: The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model param-
eter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages.
In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-
averaged BMD estimates.

RESULTS: A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA’s Integrated Risk Information System (IRIS) data-
base (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the
BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates.
CONCLUSIONS: The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most
recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose–response modeling more reliable and
can provide distributional estimates for important quantities in dose–response assessment, which greatly facilitates the current trend for probabilistic
risk assessment. https://doi.org/10.1289/EHP1289

Introduction
The benchmark dose (BMD) method has been widely accepted as
the preferred method to replace the traditional no (or lowest)
observed adverse effect level (NOAEL/LOAEL) approach for
dose–response assessment in human health risk assessment. The
BMD method has many important advantages over the NOAEL/
LOAEL approach, but it requires more sophisticated regression
algorithms to fit various dose–response models to the input data.
Hence, it is necessary to have well-developed software to facili-
tate implementation of the BMD method.

There are two major software programs for BMD analysis
that have been widely distributed and used by risk assessors and
scientists throughout the world. The first is the Benchmark
Dose Software [version 2.6.0.1; U.S. Environmental Protection
Agency (EPA)] that was originally published by the U.S. EPA
in 2000 and has been continuously upgraded and improved. This
software is Windows based and has a well-designed graphical
user interface (GUI) that is capable of analyzing multiple types
of dose–response data, including the two most frequently used

types: dichotomous data and continuous data. Over the years, a
number of special dose–response models have been added to
the software package (e.g., models to handle nested data) for
certain specific uses, and some third-party packages (e.g.,
BMDS Wizard; ICF International) have been built to meet par-
ticular needs. The second software program, PROAST, is pub-
lished by the Netherlands National Institute for Public Health
and the Environment (RIVM). PROAST is programmed in the
R programming language (R Core Team) and can be used on
any operating system where R can be installed (e.g., Windows,
Linux, Mac). PROAST is able to analyze dichotomous, continu-
ous, and ordinal dose–response data, and a GUI was recently
developed for the latest version, which was published in early
2014 (v.38.9). Both software packages have their respective
advantages and are slightly different in some technical details,
such as the dose–response models included and default assump-
tions on the distribution of continuous data. In general, both pack-
ages are suitable for dose–response analysis and deriving BMD
and its statistical lower bound (BMDL). However, it is important
to note that both software approaches utilize a frequentist-based
statistical approach (i.e., the maximum likelihood estimation) for
dose–response model fitting and parameter estimation.

In this paper, we present a web-based dose–response modeling
system featuring an implementation of Bayesian inference for
benchmark dose estimation. There are two important reasons for
developing a Bayesian statistics–based BMD estimation system
to supplement existing tools. First and most importantly, the
Bayesian framework provides a way to incorporate prior informa-
tion through the prior distribution of model parameters, which has
great potential to enhance the reliability of dose–response model-
ing for poor-quality data, which may be the only data available for
risk assessors in some situations. In addition, incorporating prior
information may allow a reduction of the number of animals
required for testing in future studies (Slob and Setzer 2014).
Second, owing to the distributional/probabilistic nature of this
approach, a Bayesian dose–response modeling tool can facilitate
probabilistic risk assessment, which is advocated by the scientific
community (Gaylor et al. 1999; Evans et al. 2001; Hattis et al.
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2002; Axelrad et al. 2005; Woodruff et al. 2007; Chiu and Slob
2015). In 2009, the National Research Council (NRC) published a
milestone work in the field of risk assessment, Science and
Decisions: Advancing Risk Assessment (NRC 2009), which
emphasizes the importance of probabilistically quantifying risk-
specific dose in risk assessment to support regulatory decision
making. More recently, the World Health Organization (WHO)
published a guidance document on using probabilistic framework
to harmonize the approaches to risk characterization (IPCS 2014).

The web-based application, which we refer to as the
Bayesian Benchmark Dose (BBMD) analysis system, is available
at https://benchmarkdose.org. Instead of providing point esti-
mates for the quantities of interest (e.g., BMD, model parame-
ters), the BBMD system characterizes a distribution of these
quantities using Bayesian posterior samples. The software is
designed to separate model fitting from BMD analysis; decou-
pling these steps makes the system computationally efficient and
allows greater flexibility in analysis. The system implements
recently developed BMD analysis approaches, such as the
model-averaged (MA) BMD method (Shao and Gift 2014;
Fang et al. 2015) and a hybrid approach for estimating BMD
from continuous data (Crump 1995; Shao and Gift 2014).
Thus, BBMD represents state-of-the-science methodology and
technology in the field of dose–response assessment.

The paper is organized as follows: In the second section, a
detailed introduction of the functionalities and features of the
BBMD system is presented. In the third section, we compare
BMD estimates from the BBMD system with their counterparts
estimated from the U.S. EPA’s BMDS (at present, the most widely
used BMD estimation software). A comprehensive discussion of
the advantages and limitations of the BBMD system is presented
in the fourth section, followed by conclusions in the fifth section.
Additional details on technical issues, test data sets, and BMD
analysis results are provided in the Supplemental Material and in
the “Testing Datasets and Results” file as indicated below.

The Bayesian Benchmark Dose (BBMD)
Analysis System

Overview of the System
The BBMD system was developed to support quantitative dose–
response assessment in human health risk assessment. The system
was created using Python, C++ , Stan, and Javascript program-
ming languages and was designed as a web application. This par-
ticular online application has been published as open-source
software with the Apache License (version 2.0), and the BBMD
source code is available at https://github.com/kanshao. The system
contains two modules: the back-end module, which is responsible
for computation and data storage (see “Website Architecture” in
the Supplemental Material for a more detailed description of the
website architecture; see also Figures S1 and S2), and the front
end module, which interacts with users via a web browser.

There are two views on the user interface: a) creating/updating
an analysis and b) reviewing an existing analysis. In the first view,
users create/change specific settings and execute the analysis; in
the second view, analysis results can be displayed and exported.
Figure 1 illustrates the general steps to complete a BMD analysis.
Given an input dose–response data set, settings for the Markov
chain Monte Carlo (MCMC) algorithm, and selected dose–
response model(s), the system conducts model fitting; generates
statistical estimates for model parameters, measures of goodness-
of-fit, and cross-model comparison; and generates fitted dose–
response curve(s). For BMD estimation, the posterior samples
generated from the model-fitting process together with user-
defined benchmark dose response (BMR) are further used in the

final step for BMD estimation, in which graphical and textual
results are presented to users. Detailed instructions on how to
use the BBMD system are presented in the User Manual and
Technical Guidance available on the BBMD website.

Input Data and Dose–Response Modeling Methods
Dichotomous and continuous dose–response data can be analyzed
by BBMD. For each data type, the user can further specify input
data as individual or summary data. The modeling strategy is the
same for these different data types: It uses Bayesian inference to
estimate model parameters based on Bayes’ rule that can be
expressed as

pð�jDataÞ / pð�ÞpðDataj�Þ, [1]

where pð�jDataÞ and pð�Þ are the posterior and prior distribution
of the model parameters �, respectively, and pðDataj�Þ is the
likelihood function. Equation 1 states that the posterior distribu-
tion of model parameters is proportional to the product of the
prior distribution of model parameters and the likelihood func-
tion. For different data types, the likelihood function, pðDataj�Þ,
differentiates in terms of distribution and model forms, which is
discussed in detail below.

Dichotomous data. Dichotomous data use binary “success”
or “failure” categories (1 or 0, respectively) to describe the status
of subjects (e.g., animals tested in a toxicity study) treated at vari-
ous dose levels with or without an effect (e.g., cancer). For sum-
mary dichotomous data, three variables [i.e., dose level (di),
number of subjects in each dose group (ni), and the number of

Figure 1. General steps to complete a benchmark dose (BMD) analysis in
Bayesian Benchmark Dose (BBMD) system. Note: BMR, benchmark dose
response; MCMC, Markov chain Monte Carlo.
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subjects with effect in the corresponding dose group (yi)] are
needed to characterize the dose–response relationship based on
the assumption that the number of subjects with effect at each
dose group follows a binomial distribution yi ∼ binomial ðni, riÞ,
where the parameter ri = f ðdij�Þ represents the probability of
effect in the ith dose group and is determined by a dose–response
function with a parameter vector of � (Shao and Small 2011).
Given the settings of dichotomous data described above, the loga-
rithm of the likelihood function in Equation 1 for summary di-
chotomous data can be expressed in Equation 2. The reason to
express the likelihood function in logarithm format is that the
log-likelihood function serves as the foundation for MCMC sam-
pling in Stan (Stan Developmen Team).

log ½pðDataj�Þ�=
XG
i=1

(
log

ni
yi

� �
+ yi log ½f ðdij�Þ�

+ ðni − yiÞlog½1− f ðdij�Þ�
)
, [2]

where G is the number of dose groups in the data set, and f ðdij�Þ
represents a parametric dose–response model. There are eight
choices available for the dose–response models for dichotomous
data, and these models will be introduced in a later section.

For individual dichotomous data, each individual subject is
characterized by two quantities: the dose level and a value of “1”
or “0” indicating effect or effect-free. Random variables in this
format can be described by a Bernoulli distribution. However,
when considering the individual subjects exposed at the same
dose level as a group, the number of subjects in each group (n) is
fixed, and the number of subjects with effect (y) can be counted
and dependent on probability (p), which is estimated by a dose–
response function. Therefore, this data type is basically identical
to the summary dichotomous data, which can be described by a
binomial distribution. Consequently, for individual dichotomous
data, the BBMD system will first convert the data to summary di-
chotomous data and then apply Equation 2 for modeling.

Continuous data. The second data type that can be modeled
in BBMD software is continuous data (such as body weight and
relative liver weight). For continuous data (regardless of whether
they are individual or summary data), one fundamental assump-
tion must be made regarding how the continuous responses are
distributed. BMDS applies a normal distribution as the default
assumption to model continuous data, and PROAST assumes
that continuous responses are lognormally distributed. Shao et al.
(2013) comprehensively examined and compared these two
assumptions in the context of dose–response assessment and
concluded that the lognormal assumption is more biologically
plausible, adaptable, and reliable, particularly when within-group
variance is large. Therefore, in the BBMD system, we use the
lognormal distribution for modeling continuous end points.

If individual response data are available, the dose (di) and
response (yi) should be reported for each subject. Using �0 to rep-
resent parameters in a continuous dose–response model and g 2 to
represent the within-dose-group variance parameter (these two
components together form the parameter vector � in Equation 1),
the log-likelihood function can be expressed as

log p Dataj�ð Þ½ �= −
N
2
log 2pð Þ− N

2
log g 2

� �
−

1
2g 2

XN
i=1

n
log yið Þ− log f dij�0

� �� �o2
, [3]

where f ðdij�0Þ represents a dose–response model for continuous
data, and N is the total number of subjects in the data set being

analyzed. Available continuous dose–response in the BBMD sys-
tem will be introduced in a later section.

In published literature, raw data are often unavailable, and
results are reported as summary statistics (e.g., mean and standard
deviation), which we refer to as summary continuous data in
BBMD. In a complete summary continuous data set, there are four
reported variables: dose level (di), number of subjects in each
group (ni), the observed mean value of response in each group
(�yi), and the observed standard deviation of response in each
group (si). Under the lognormality assumption, the commonly
reported mean and standard deviation on the regular scale are
converted to the corresponding quantities on a log scale using

�y
0
i = log ð�yiÞ− 0:5× log½ðsi=�yiÞ2 + 1� and s0i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ½ðsi=�yiÞ2 + 1�

q
(Crump 1995, Slob 2002). Modeling summary continuous data
shares the same fundamental idea as Equation 3 but is differenti-
ated by input data, so the log-likelihood function that is used in the
Stan model for MCMC sampling is

log p Dataj�ð Þ½ �= −
N
2
log 2pð Þ−

XG
i=1

(
ni
2
log g 2

� �

+
ni ×

n
�y

0
i − log f dij�0ð Þ½ �

o2
+ ni − 1ð Þ× s0i

2

2g 2

)
,

[4]

where N and G represent the total number of subjects and the
number of dose groups, respectively.

It is worth mentioning that the U.S. EPA’s BMDS allows the
user to input individual continuous data, but the system converts
the individual data into summary data by grouping subjects with
the same dose level and then fits the data as if they were summary
data. For many toxicological bioassay and in vitro data sets, this
is a valid approach given the normality assumption used in the
BMDS because multiple animals/replicates are usually tested at
the same dose level. However, this approach limits the capability
of analyzing responses with unique dose levels (i.e., n=1 for
each dose group, a common situation in epidemiological data
sets) because one required input quantity [s0i (or si, the within-
dose-group standard deviation)] in Equation 4 cannot be calcu-
lated when n=1. Hence, the ability of the BBMD system to
directly model individual continuous data is important.

Modeling Settings
The modeling settings consist of two major components: the
Markov chain Monte Carlo (MCMC) settings and dose–response
model settings.

Markov chain Monte Carlo (MCMC) settings. MCMC set-
tings provide specifications to Stan (Carpenter et al. 2017) where
the posterior sampling via MCMC is performed. Users specify
the length of the Markov chain (i.e., how many samples to gener-
ate in each chain), the number of chains, the warm-up ratio (the
proportion of posterior sample in each chain to be discarded), and
a random seed. The chain length and warm-up ratio are closely
related to the posterior sample convergence, an important indica-
tor to judge MCMC sampling performance. In principle, the lon-
ger the chain, the better the chance that the chain will eventually
converge, so using longer chains and a larger warm-up ratio is a
way to ensure convergence. Because multiple chains may use dif-
ferent sets of initial values, these chains that converge to the
same steady state can further justify the reliability of the sam-
pling algorithm. However, longer chains require greater computa-
tional time and increased data storage requirements, which is a
critical issue for an online system. Based on testing and
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calibration of the BBMD modeling system, Stan generally appears
to converge relatively quickly on most data sets tested, so it is of-
ten unnecessary to use longer chains. The default settings used by
the BBMD system (one chain with 30,000 samples and 50%
warm-up ratio) perform well based on testing results (presented in
a later section). The fourth MCMC setting, random seed, is ran-
domly generated for each analysis but can also be specified by the
user if a fixed seed is desired (for result reproducibility).

Dose–response model settings. Sixteen frequently used dose–
response models are presently available in BBMD, eight for di-
chotomous data and eight for continuous data. The models with
parameter value ranges are listed in Appendix 1.

There is a “g” parameter (a power parameter on the dose) in
the Weibull, Loglogistic, Logprobit, and Dichotomous Hill mod-
els for dichotomous data, and in the Power, Hill, Exponential 3,
and Exponential 5 models for continuous data. According to the
BMD Technical Guidance (U.S. EPA 2012), the default setting
in the U.S. EPA’s BMDS for this power parameter is ≥1, with
the option to relax the restriction to ≥0. There is debate in the sci-
entific community about whether the power parameter should be
restricted to ≥1. In the present BBMD system, we provide five
options for the power parameter in the corresponding models:
≥0, ≥0:25, ≥0:5, ≥0:75, and ≥1.

Prior distributions for model parameters. The prior distribu-
tion is one important component in a Bayesian framework. In the
present BBMD system, uniform distributions are used for all
model parameters, and the lower and upper bounds of these uni-
form distributions are determined based on biological considera-
tions and preliminary testing. The specification of priors needs to
balance the flexibility of the model and the unnecessary uncer-
tainty in estimation, so the range of the parameters determined by
the uniform prior distribution cannot be too large or too small.
(See “Settings of Prior for Model Parameters” in the Supplemental
Material for details on the uniform distributions used for different
models). Testing results presented and discussed below detail the
appropriateness of using these prior distributions.

Instead of using noninformative priors (e.g., the uniform
distributions employed in the present BBMD system), properly
derived informative priors may enhance the reliability of model
fitting and BMD estimation. However, effectively employing
informative priors requires extensive research; this will be our
next major task in BBMD development. (See “The Impact of
Generalized Informative Prior on BMD Estimation” in the
Supplemental Material for a preliminary example demonstrat-
ing how using informative prior may impact BMD estimation;
see also Figures S3–S6).

Dose–Response Modeling Results
After a data set and settings are provided, the BBMD system per-
forms regression analysis and provides outputs in the “Model fit
results” tab. The following statistics are available for each model:
model parameter estimates, posterior predictive p-value, model
weight, and graphical dose–response curve.

Model parameter estimation. The first section on the “Model
fit results” page contains summary statistics (including mean,
standard error of the mean, standard deviation, various quantiles,
and quantities that indicate effective sample size and chain con-
vergence) for each model parameter. The data shown in the text
box in the upper part of Figure 2 are directly acquired from the
Stan output; some information regarding the MCMC execution is
also presented. A correlation coefficient matrix is provided for
the model parameters and is calculated using posterior samples.

For the purpose of generality, doses in all data sets are nor-
malized to the scale between 0 and 1 by dividing the highest dose
level in that data set. Therefore, to reproduce dose–response

curves or to calculate BMDs, parameter summary statistics
shown in the box or the posterior samples of model parameters
exported from the website should not be directly employed for
such activities. Instead, maximum dose level in this particular
data set needs to be properly applied for plotting the dose–
response curve or calculating the BMD.

An additional graphical output can be expanded by the user at
the bottom of this page to show the probability density plot esti-
mated by the kernel density estimation function in SciPy
(Oliphant 2007; Millman and Aivazis 2011) and the trace plot of
posterior samples for each model parameter, shown in Figure 3
as an example. Being cognizant of a user’s web browsing experi-
ence, parameter chain plots are hidden by default to avoid
unnecessary transmission of large data sets.

Posterior predictive p-value. Posterior predictive p-value
(PPP; Gelman et al. 2004) is a way to assess the fit of the model
to the data under the Bayesian framework and has a similar pur-
pose as the p-value provided in traditional BMD software, such as
BMDS, which uses frequentist statistical approaches. However,
the p-values are interpreted differently. Both p-values use likeli-
hood as a key statistic. In the U.S. EPA’s BMDS, a likelihood ra-
tio (the likelihood of the fitted model over the likelihood of the
saturated model) is assumed following a v2 distribution, and the
null hypothesis is rejected if the p-value is too small (i.e., model
fitting is not adequate). In practice, as recommended in the BMD
Technical Guidance (U.S. EPA 2012), if the p-value is <0:1, the
model should not be considered for BMD calculation. The BBMD
system uses the posterior samples of model parameters and esti-
mates the posterior predictive p-value as described by Gelman
et al. (2004). Posterior samples are first used to generate predicted
responses; then, likelihood values calculated using the predicted
responses and original data are computed and compared; finally,
the probability that one type of likelihood is larger than the other
(e.g., Pr½Tðy,�lÞ> Tðypred,l,�lÞ�) is estimated. The PPP can be
approximated by counting the predicted responses that satisfy the
inequality out of the entire posterior sample space. A large or
small p-value means that a discrepancy in predicted data is very
likely, further indicating a poor fit. Therefore, a PPP value within
the range from 0.05 to 0.95 indicates an adequate fit.

Model weight calculation. A model weight is calculated for
each model included in the analysis as a statistic for cross-model
comparison. The approach used in the system to compute model
weight was introduced by Wasserman (2000), using the following
two equations [i.e., Equations 25 and 26 in Wasserman (2000)]:

Pr MjjData
� �

=
bmjPK

k=1 bmk
[5]

and

log bmj
� �

= b‘j − qj
2
log nð Þ, [6]

where b‘j = ‘jðb�jÞ is a log-likelihood value estimated using poste-
rior sample of model parameters of the jth model; qj is the num-
ber of model parameters in the jth model, and n is the data set
sample size. The meaning of Equation 5 is that the posterior
model weight of model j is equal to the m value estimated from
model j divided by the sum of m values estimated from all mod-
els in the analysis. Equation 5 is a special case of Equation 13
(defined below and used for MA BMD estimation), when all
models in the analysis have an equal prior weight (i.e., 1/K). The
m value for each model is calculated using Equation 6; the right
side of the equation is similar to the Bayesian Information
Criterion (BIC) model weight approximation method originally
proposed by Kass and Raftery (1995) and widely applied in more
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recent dose–response assessment literature (Wheeler and Bailer
2007; Shao and Gift 2014). Each set of the posterior sample of
model parameters is used to calculate a set of posterior model
weights for the models included. The reported model weights are
the average posterior weights of each model. Although the model
weights calculated are based on likelihood (with no preference to
model format) and are used for cross-model comparison, this
approach provides a base for model averaging to address model
uncertainty, further discussed below in “Model-averaged BMD
calculation.”

In the BMDS software, the Akaike Information Criterion
(AIC) value is computed and is used for comparing fitted dose–
response models. The AIC, like the BIC, includes both likelihood

and a penalty term for the number of parameters. However, the
AIC mainly provides a qualitative model comparison (i.e., a model
with a lower AIC value is better, but how much better is difficult
to discern). The model weight approach implemented in BBMD
provides numerical model weights for each model, which is ad-
vantageous in the context of probabilistic risk assessment to the
AIC method because the weights quantitatively compare dose–
response models and probabilistically quantify model uncertainty.

An implicit assumption in Equation 5 is that each model
included in the analysis has an equal prior model weight, which
means that we believe each model is equally likely to fit the data
well before we see the data. This assumption makes the model
weights reported on this page solely determined by model fit and

Figure 2. Textual and graphical output for model fitting results. The textual output in the box mainly includes the mean, standard error of the mean, standard
deviation, various quantiles, and quantities indicating effective sample size and chain convergence for each model parameter, as well as information regarding
the Markov chain Monte Carlo (MCMC) execution. A dynamic dose–response plot is shown below the text box. This plot includes original dose–response data
and a fitted curve with its 90th percentile interval shaded in blue. The estimated median and the 5th and and 95th percentiles at a particular dose level indicated
by the user’s cursor are also displayed. Other information displayed in this figure includes the PyStan version, the lower bound placed on the power parameter
(if applicable), the posterior predictive p-value (PPP value) for model fit and model weight for cross-model comparison.
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the number of parameters in the models. In the BMD estimation
step described in “Model-averaged BMD calculation,” the model
weight concept is used again, but additional information on prior
model weight will be incorporated.

The dose–response plot. The lower part of Figure 2 shows an
example of the dynamic dose–response plot presented on this tab.
The plot displays the original data and the fitted curve (solid or-
ange line) with its 90th percentile interval (shaded area in blue).
The plot also interactively displays the estimated median and the
5th and 95th percentiles of the response at the dose level where a
user moves the mouse. This feature allows users to capture the
response range at doses of interest (or vice versa).

Benchmark Dose Estimation
A benchmark dose is defined as the dose level that causes a pre-
determined change in the response, and it has a number of uses

in risk assessment applications. The BBMD software provides
distributional BMD estimates using multiple definitions and
derivations. In addition, recently developed model-averaging
methodology has been implemented for estimating MA BMD,
which may be a preferred method for BMD analysis (Wheeler and
Bailer 2007; Shao and Gift 2014; EFSA Scientific Committee
et al. 2017) because it represents an ensemble of all models used
in the analysis.

BMD calculation for dichotomous data. For dichotomous
data, two commonly used BMD definitions are extra risk and
added risk, as shown in Equations 7 and 8, respectively:

BMR=
f BMDð Þ− f 0ð Þ

1− f 0ð Þ [7]

and

Figure 3. Distribution plot and posterior sample tracing plot for model parameters. This figure is a screenshot of the Bayesian Benchmark Dose (BBMD) web-
site. A correlation matrix is displayed on the top of the graph to show the correlation coefficients between different model parameters. On the bottom, a distri-
bution plot (including a histogram and fitted probability density curve) and a posterior sample tracing plot (i.e., all posterior samples are sequentially connected
by solid lines) are illustrated for each parameter.

Environmental Health Perspectives 017002-6



BMR= f ðBMDÞ− f ð0Þ, [8]

where f ð�Þ represents a dichotomous dose–response model. BMR in
Equations 7 and 8 stands for benchmark response, which is a speci-
fied increase in the probability of response and is commonly set at
10%, 5%, or 1%. BMD based on extra risk definition is the default
option used in BMDS, and only one BMR can be selected for each
model execution. The BBMD system calculates both BMDs for
each dichotomous dose–response model included in an analysis.

Under a Bayesian framework, BMD estimation is basically cal-
culating the posterior sample of BMD with the same length as the
posterior sample of the model parameters. With the posterior sam-
ple, a number of statistics (including the mean, median, standard
deviation, and other quantiles) of BMD can be computed and are
reported on the “BMD estimates” tab. Based on our testing, the me-
dian value of the BMD posterior sample is the most reliable esti-
mate for BMD owing to its resistance to some extreme values in the
sample. In addition, the 5th percentile of the posterior sample is
considered the lower bound of BMD (i.e., BMDL) corresponding to
the lower bound of the one-sided 95th confidence interval used in
the U.S. EPA’s BMDS. The BMDL is usually used as the point of
departure for low-dose extrapolation and is therefore of great regula-
tory interest. The same procedures used for determining BMD and
BMDL are also applied to continuous data.

BMD calculation for continuous data. For continuous data,
multiple BMD definitions are available in BBMD and are grouped
into two categories: a) based on central tendency and b) based on
tails [i.e., the hybrid approach proposed by Crump (1995)].

For BMD defined on central tendency, there are three options
for defining the BMR value: a) relative change, b) absolute change,
and c) cutoff, which are expressed by Equations 9–11, respectively:

f ðBMDÞ± f ð0Þ=Relative Change× f ð0Þ, [9]

f ðBMDÞ=Absolute Change± f ð0Þ, [10]

f ðBMDÞ= cutoff , [11]

where f ð�Þ represents a continuous dose–response model fit to the
central tendency of the data (i.e., the median under the lognor-
mality assumption). The BMD is the dose level that satisfies the
selected definition equation. For continuous data, both increasing
and decreasing trends are possible, so there is a “± ” in Equations
9 and 10 corresponding to increasing or decreasing trend.

For a BMD defined using a hybrid approach, an adversity
value must be specified in addition to a BMR value. The hybrid
approach considers any response above or below (i.e., correspond-
ing to increasing or decreasing trend) the adversity value as abnor-
mal; thus, the BMD is the dose level where the proportion of the
abnormality has increased a certain percent (i.e., BMR) compared
with the control. Mathematically, for increasing trend, the hybrid
BMD definition can be expressed as Qð0Þ−QðBMDÞ=BMR for
added risk, and Q 0ð Þ−QðBMDÞ� �

= 1−Qð0Þ½ �=BMR for extra
risk, where Qð�Þ is the quantile of the adversity cutoff value at a
specified dose level.

It remains debatable whether the hybrid method is superior or
more biologically plausible than central tendency methods.
However, in addition to the original publication (Crump 1995),
recent publications (Shao and Gift 2014; Wheeler et al. 2015,
2017) have accepted the idea of defining the BMD based on the
tails of the distribution. Therefore, we believe the hybrid method
can provide a useful supplemental approach for BMD estimation
using continuous data. The BBMD software is the first bench-
mark dose software with a graphical user interface that imple-
ments the hybrid approach.

Model-averaged BMD calculation. BBMD allows for the
calculation of MA BMDs and BMDLs, which have been recom-
mended for use by the European Food Safety Authority (EFSA
Scientific Committee et al. 2017). Based on the idea of model
averaging introduced by Hoeting et al. (1999), the MA BMD can
be expressed as

PrðBMDmajDataÞ=
XK
k=1

PrðBMDkjMk,DataÞPrðMkjDataÞ:

[12]

The explanation of Equation 12 is that the MA distribution of
the BMD is a weighted sum of the BMD distribution estimated
from each individual model included in an analysis. The model
weight portion of Equation 12, PrðMkjDataÞ, was previously
described in Equation 5 for cross-model comparison (Equation 5
assumes equal model prior weights). In a Bayesian context, the
distribution of BMD is characterized by a vector of posterior
sample of BMD. Hence, the MA BMD vector is an integration of
weighted vectors from individual models. Then, the vector of
MA BMDs (which is the same length as an individual model pos-
terior sample) can be used to compute statistics such as the
BMDma (the median) or the BMDLma (the 5th percentile). A few
different methods have been proposed for MA BMD calculations
(Wheeler and Bailer 2007; Shao and Gift 2014; Simmons et al.
2015; Fang et al. 2015), and simulation study is needed to judge
which is superior or whether these methods are generally similar.
The primary reason for selecting the method described above
[similar to the method proposed by Shao and Gift (2014)] is that
this method is effective and consistent with the Bayesian model-
ing method employed in the BBMD system.

The model weight calculation equation is now expanded from
Equation 5 by adding a prior model weight as expressed by the
equation below [i.e., Equation 18 in Wasserman (2000)]:

Pr MjjData
� �

=
bmjPr Mjð ÞPK

k=1 bmkPr Mkð Þ : [13]

The prior weight of individual models, PrðMjÞ, has a default
value of 1/K (where K is the number of models included in an
analysis), but each model’s prior weight can be modified in
BBMD. The ability to modify the model prior weight serves two
primary functions:

• First, it allows users to include prior knowledge into the
BMD analysis. For example, if previous analyses or collec-
tive toxicological knowledge suggest that one model is pre-
ferred over others, a higher prior weight can be given to the
preferred model.

• Second, it gives users a second chance to include/exclude
models for the MA BMD calculation. For example, a user
may choose to use the Weibull model twice in the model-
fitting step, using different settings for the power parameter
(e.g., ≥0 and ≥1). After the model fitting, instead of using
both Weibull models in MA BMD calculations, the user can
exclude one Weibull model instance by specifying a prior
model weight of 0.
These features make the BBMD system unique and advanced

compared with the existing BMD software packages; they also
represent the state-of-the-science technology in dose–response
modeling. A screen shot of the BMD estimation page in the
BBMD system is shown in Figure 4.

Testing Results Comparison
In an effort to better understand the results from BBMD, we
tested the system by comparing outputs from BBMD and from
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the U.S. EPA’s BMDS software, modeling the same data sets
using the default parameter settings (i.e., power parameters are
restricted to be ≥1). The data sets were actual toxicological data
reported in the U.S. EPA Integrated Risk Information System

(IRIS) toxicological review reports, as well as other similar
reports by the U.S. EPA and other agencies. Wignall et al. (2014)
proposed a standardized procedure to estimate BMD/BMDL
using BMDS and applied the procedure to these data sets.

Figure 4. Graphical and tabular output for benchmark dose (BMD) estimates. This example presents two dichotomous dose–response models, Logistic and
Loglogistic, along with a single 10% benchmark dose response (BMR), shown in the form of both Extra risk and Added risk. The model average of both mod-
els is also present. The figures present the probability distribution function (PDF) of BMD estimates for each model. The table below presents the prior model
weights, the posterior model weight, and various statistics for each individual model and the model average.
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Together with the manuscript, the authors published the data sets
used in their study and suggested actions to be taken (e.g.,
excluding the highest dose level in the data set for BMD analy-
sis). We used all data sets that were suitable for BMD analysis
(i.e., at least one of the dose–response models could adequately
fit the data for BMD calculation) and removed duplicates, leaving
518 dichotomous data sets and 108 continuous data sets for test-
ing and model comparison.

Our analysis included a model-wise comparison of quantities
of interest that can be used to judge the quality and reliability of
BMD estimation. The BMDS and BBMD systems fit the same
dose–response models to the same data sets and estimated BMDs
and BMDLs based on various BMR definitions. For dichotomous
data, both extra-risk and added-risk BMD definitions were tested
at two BMR values (10% and 1%): a total of four combinations
(i.e., 518× 4= 2,072 BMDs and 2,072 BMDLs were calculated
for each model). For continuous data, owing to the difference in
the assumption on the distribution of responses used in the two
systems (normal in BMDS and lognormal in BBMD), BMDs
defined by relative change in central tendency were considered
sufficiently comparable (Shao et al. 2013). Thus, we compared
the BMDs (and associated BMDLs) estimated using 10% and 1%
relative change in the central tendency (i.e., 108× 2=216 BMDs
and 216 BMDLs were calculated for each of the seven continu-
ous models included in both software packages). Polynomial is
not included in BBMD; Michaelis-Menten is not included in
BMDS). The following common and program-specific compari-
son quantities are measured for each dose–response model and
are presented in Tables 1 and 2 for dichotomous and continuous
data, respectively:

1. Number of failed BMD, a common measure between soft-
ware packages. “Failure” is defined as the BMD estimates
being reported as “not available (NA)” or “error” or ≤0.

There are 2,072 BMD estimates for dichotomous data and
216 BMD estimates for continuous data.

2. Number of failed BMDL, a common measure, where “fail-
ure” is defined as above in (1).

3. The BMD/BMDL ratio, a common measure. Models with
either a failed BMD or BMDL as defined above in (1) and
(2) were removed from this analysis. Because the BMD/
BMDL ratio is commonly used for measuring the reliabil-
ity of BMDL estimates regardless of BMR definition, the
extra-risk BMDs and added-risk BMDs are considered
together. However, model performance may change dra-
matically in low dose ranges; thus, the ratios at the
BMR=10% and 1% (and the relative change at 10% and
1% for continuous data) are calculated separately. The
median and the 95th percentile interval of the ratio were
reported.

4. Number of reduced models, a BMDS-specific measure. In
BMDS, a more complex model may reduce to a simpler
form if one or more parameters hit the defined parameter
bound during the optimization process. For example, the
Weibull model will become the quantal-linear model when
the power parameter hits the bound at 1. When the model
format is simplified, BMDL estimation may be affected
(because the number of parameters is reduced). Therefore,
in this analysis, if a more complex model has AIC and
model fitting p-values (simultaneously) identical to those of
a plausibly simpler model (for example, the quantal-linear
model is a plausibly simpler model for the second-degree
multistage model but not for the LogProbit model), then the
complex model is considered as “reduced”. This indicator is
model-specific and is not available for all models in BMDS
(e.g., a two-parameter model cannot be simplified further).
In BBMD, posterior sampling for all model parameters is

Table 1. Comparison of BMD estimation for dichotomous data.

Quantities measured Quantal-linear Logistic Probit Weibull Multistage 2 LogLogistic LogProbit
Dichotomous

Hill

BMDS
Number of failed BMD 0 0 0 12 0 0 4 773a

Number of failed BMDL 0 8 0 12 1 0 8 833a

BMD/BMDL ratio
(at BMR=0:1)

1.51
(1.21–2.69)

1.30
(1.13–3.19)

1.31
(1.15–3.03)

1.70
(1.20–8.41)

1.62
(1.18–5.73)

1.89
(1.21–10.5)

1.49
(1.20–4.75)

1.69
(1.11–10.3)

BMD/BMDL ratio
(at BMR=0:01)

1.51
(1.21–2.67)

1.50
(1.22–15.5)

1.51
(1.20–13.9)

2.51
(1.24–56.2)

2.14
(1.24–18.6)

3.22
(1.42–68.0)

1.65
(1.24–10.2)

4.91
(1.23–93.6)

Number of reduced model NA NA NA 183 to Quantal-
linear

184 to Quantal-
linear

31 to Logistic 63 to Probit 124 to
LogLotistic

BBMD
Number of failed BMD 0 0 0 0 0 0 0 0
Number of failed BMDL 0 0 0 0 0 0 0 0
BMD/BMDL ratio
(at BMR=0:1)

1.53
(1.21–2.51)

1.29
(1.09–2.20)

1.29
(1.10–2.06)

1.69
(1.12–4.39)

1.60
(1.24–2.59)

1.77
(1.13–5.40)

1.47
(1.08–3.81)

2.31
(1.19–190.7)b

BMD/BMDL ratio
(at BMR=0:01)

1.53
(1.21–2.50)

1.51
(1.22–4.30)

1.50
(1.20–3.92)

3.38
(1.42–17.5)

2.23
(1.31–3.49)

3.56
(1.51–19.36)

2.00
(1.28–7.01)

4.23
(1.35–593)b

Comparison
Correlation coefficient
for BMD

0.991 0.998 0.997 0.842 0.969 0.830 0.857 0.837

Correlation coefficient
for BMDL

1.000 0.985 0.978 0.945 0.988 0.898 0.955 0.855

Ratio of BMDs 1.00
(0.829–1.18)

1.02
(0.714–1.25)

1.02
(0.494–1.32)

1.57
(0.481–24.7)

0.929
(0.205–1.67)

1.54
(0.737–29.8)

1.58
(0.865–8.98)

1.26
(0.530–29.8)

Ratio of BMDLs 1.00
(0.888–1.89)

1.03
(0.973–2.44)

1.02
(0.942–2.71)

1.68
(1.02–9.63)

1.06
(0.530–1.29)

1.93
(1.05–18.0)

1.66
(1.06–6.10)

1.59
(0.079–21.5)

Note: BBMD, Bayesian benchmark dose method; BMD, benchmark dose; BMDL, lower bound of BMD; BMR, benchmark response; BMDS, U.S. Environmental Protection
Agency’s Benchmark Dose Software; NA, not available.
aThe BMDS directly reports “error” for BMD and BMDL when the number of dose groups is smaller than the number of model parameters in the Dichotomous Hill model. Of the 518
data sets, 186 have only three dose groups; therefore, 744 ð=186× 4Þ in these failed BMDs or BMDLs are due to insufficient dose groups.
bFor the BMD/BMDL ratios calculated using the Dichotomous Hill model in the BBMD system, all results from the 518 data sets (including those having only three dose groups) are
included.
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always performed; therefore, models cannot reduce to a
simpler form, even with restricted parameters.

5. Comparison between the BBMD and BMDS systems. The
comparison focuses on two measures: the correlation coeffi-
cient and the ratio of BMD and BMDL estimates obtained
from the BBMD and BMDS estimates, respectively.
a. The Pearson’s correlation coefficient (PCC) was calcu-
lated for “failure-removed” BMD estimates from the
BBMD system (variable 1) and from the BMDS system
(variable 2) where the BMDs based on different defini-
tions were not separated for this calculation because this
value should not be BMR-type-specific. The PCC was
also calculated for BMDL estimates.

b. The ratio of the BMD and BMDL estimates from the
two systems are calculated and reported in median and
95th percentile intervals in Tables 1 and 2. In these two
tables, the ratios are not calculated separately for differ-
ent BMD definitions or BMR values. In addition, to
compare the BMD and BMDL estimates from the two
systems, we used linear models to fit the BMD (or
BMDL) estimates and generate BMD-BMD or BMDL-
BMDL plots (plots and estimated coefficients are pro-
vided in Figures S7–S22 for dichotomous data and in
Figures S23–S36 for continuous data).

In BBMD, convergence of posterior sampling is an impor-
tant consideration because it indicates the reliability and consis-
tency of the MCMC posterior sampling, which is important for
characterizing BMD distributions. Convergence is measured bybR for each parameter distribution in Stan, which is subsequently
reported in BBMD. The closer to 1 the value of bR is, the better
convergence is achieved. In the testing analyses, we first used
the default settings (e.g., 1 chain, 30,000 samples in length,
the first 15,000 samples treated as warm-up and not saved in the
posterior) to analyze all data sets. To be conservative, the maxi-
mum bR value among all parameters in a model was reported as

the bR for that model. Based on the results of the first round,
model/data set combinations that had a weak convergence mea-
sure (1:01≤ bR <1:05 ) were identified, and the length of the
MCMC chains was increased in the second round to
30,000× 2= 60,000. For model/data set combinations that had a
very weak convergence measure (bR ≥ 1:05), the length of the
chain was changed to 120,000. For these two customized situa-
tions, the final posterior MCMC sample to be used in analyses
was kept at 15,000 for each model; thus, the length of the
warm-up sample may vary (i.e., the percentage of the warm-up
sample is 75% and 87.5% in these two situations, respectively).
For the model/data set combination that was well-converged in
the first round, the default setting was kept. The percentage of
data sets with bR ≤ 1:01 and the 97.5th percentile of the bR value
for each dose–response model are reported in Table 3 for the
first- and second-round analyses. We also tried increasing the
number of chains and the length of each chain for poorly con-
verged data set/models, but we found that the convergence per-
formance was not better than the customized strategy reported
in Table 3 (for some models, the performance was even worse).
Therefore, these results suggest that the default MCMC settings
used in the BBMD system are adequate for most data sets
(assuming that future data sets are similar to the real toxicologi-
cal data used in testing).

Another important measure provided in BBMD is effective
sample size, which gives a sense of whether the simulated sample
is sufficient for practical purposes. In Table 3, the mean and the
95th percentile interval of the minimum effective sample size
(i.e., the smallest effective sample size among model parameters
was chosen as the effective sample size for that data set) esti-
mated from all testing data sets are presented for each model.
The results suggest that the default settings used in the BBMD
system can provide adequate effective sample size.

Additionally, we examined some important sampler parameters
to determine the quality of the MCMC sampling, mainly including

Table 2. Comparison of BMD estimation for continuous data.

Quantities measured Linear Power Hill Exponential 2 Exponential 3 Exponential 4 Exponential 5

BMDS
Number of failed BMD 2 0 34a 0 0 2 36a

Number of failed BMDL 2 2 38a 1 1 3 37a

BMD/BMDL ratio
(at relative change= 0:1)

1.28
(1.07–2.85)

1.39
(1.05–12.9)

2.16
(1.08–1.72 × 107)

1.28
(1.07–2.14)

1.34
(1.07–6.97)

1.54
(1.09–207)

2.16
(1.13–441)

BMD/BMDL ratio
(at relative change= 0:01)

1.28
(1.07–2.85)

1.85
(1.07–33.4)

4.49
(1.20–1.32 × 106)

1.27
(1.07–2.14)

1.63
(1.07–46.96)

1.65
(1.11–211)

4.64
(1.32–985)

Number of reduced model NA 52 to Linear NA NA 57 to Exponential 2 24 to Exponential 2 22 to Exponential 3/4
BBMD
Number of failed BMD 0 0 1 0 0 0 0
Number of failed BMDL 0 0 1 0 0 0 0
BMD/BMDL ratio
(at relative change= 0:1)

1.27
(1.07–2.28)

1.33
(1.06–4.50)

2.05
(1.12–11.3)b

1.25
(1.07–2.16)

1.30
(1.06–5.66)

1.59
(1.17–22.5)

1.98
(1.06–32.5)b

BMD/BMDL ratio
(at relative change= 0:01)

1.27
(1.07–2.28)

3.07
(1.13–23.0)

3.91
(1.44–36.1)b

1.25
(1.07–2.16)

3.29
(1.12–25.1)

1.69
(1.22–19.6)

3.95
(1.44–25.8)b

Comparison
Correlation coefficient
for BMD

0.999 0.946 0.822 0.989 0.919 0.960 0.805

Correlation coefficient
for BMDL

0.994 0.960 0.927 0.992 0.950 0.861 0.847

Ratio of BMDs 0.988
(0.685–1.29)

1.22
(0.797–34.0)

1.13
(0.036–1,537)

0.988
(0.823–1.27)

1.34
(0.848–32.8)

0.874
(0.113–1.32)

1.05
(0.093–7.57)

Ratio of BMDLs 0.994
(0.719–2.09)

1.43
(0.916–10.0)

1.68
(0.639–4.5 × 106)

0.986
(0.802–1.37)

1.41
(0.954–11.7)

0.871
(0.039–94.3)

1.30
(0.080–181)

Note: BBMD, Bayesian benchmark dose method; BMD, benchmark dose; BMDL, lower bound of BMD; BMDS, U.S. Environmental Protection Agency’s Benchmark Dose
Software; NA, not available.
aThe BMDS directly reports “error” for BMD and BMDL when the number of dose groups is smaller than the number of model parameters in the Hill and Exponential 5 models. Of
the 108 data sets, 16 have only three dose groups; therefore, 32 ð=16× 2Þ in these failed BMDs or BMDLs are due to insufficient dose groups.
bFor the BMD/BMDL ratios calculated using the Hill and Exponential 5 models in the BBMD system, all results from the 108 data sets (including those having only three dose groups)
are included.
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the tree depth (Stan DevelopmenTeam) achieved and the number of
divergent steps. The minimum and maximum tree depth achieved
are reported in the model output file included in the results package
(see the Supplemental Material, “Testing Datasets and Results” zip
file). BBMD uses the default Stan setting for the maximum tree
depth allowed (i.e., 10). The results indicate that the Hill model hits
the maximum tree depth twice, and the Linear, Power, Michaelis-
Menten and Dichotomous Hill model hit the maximum tree depth
once. Therefore, we believe that it is appropriate to use the default
setting for tree depth. The results show that models with ≥3 param-
eters have a large number of divergent steps for many testing data
sets, which indicates a high risk of obtaining biased estimates. We
increased the target acceptance rate “adapt_delta” value (one control
parameter for MCMC in Stan) from 0.8 (default) to 0.9 (and even
to 0.99 with a step size of 0.01), but the number of divergent steps
was only slightly reduced. We further conducted a simulation study
to examine the relationship between divergent transitions and bias
in BMD estimation (see Supplemental Material, “Simulation Study
on the Relationship between Divergence and Bias”; see also Table
S1 and Figures S37–S39). The results suggest that the correlation
between divergence and bias in BMD estimates is not strong, but
the divergence is closely related to some aspects of the dose–
response data being modeled (e.g., the number of animals in each
group, the number of dose groups, within-dose-group variance).
Therefore, in the practice of chemical risk assessment (typically, we
only have very limited observations), divergence is to some extent
unavoidable for complex models (e.g., the Hill model). A potential
way of reducing the number of divergent transitions is employing
more informative priors to adequately reduce the space where pa-
rameters are sampled, which is our next major task in development
of the system.

In addition, we compared the best-fitting model suggestion from
BMDS and BBMD. In BMDS, the model with the lowest AIC
value is the one suggested for use in BMD analysis, whereas the
model with the highest posterior weight should be selected for use
in BBMD (if the model-averaging method provided in BBMD is
not used). For dichotomous data, 32% (164 of 518) of all data sets
select the same best-fitting model based on these criteria between
BMDS and BBMD. In BBMD, the Quantal-linear, Probit, and
Logistic models (all of which are two-parameter models) are most
frequently selected as the best model, whereas BMDS prefers the
LogLogistic, Multistage 2, and Quantal-linear models (however, a
majority of the selected Multistage 2 model has a reduced format to
Quantal-linear). For continuous data, 66 (out of 108) matched the

best model, or approximately 61% agreement. In BMDS, the Linear
model, the Hill model, and the Exponential 2 model were most
likely to be selected as the best model, whereas in BBMD, the
Linear, Exponential 2, and Exponential 4 models were the most fre-
quently selected. Interpretation of this comparison is difficult; in
BMDS, when model parameter(s) hit a bound and the model is
reduced to a simpler format, the AIC value (used for model selec-
tion) is calculated based on the reduced number of parameters,
which may explain why the Multistage 2 and LogLogistic models
frequently have lower AIC values in BMDS.

In testing the BBMD software, we allowed the Dichotomous
Hill model, the Hill model, and the Exponential 5 model (each of
which has four parameters) to fit the data sets with only three dose
groups (which is not allowed in the BMDS) to test the robustness
of the BBMD in overloaded conditions. The results presented in
Tables 1 and 2 and the dose–response plots included in the results
package (see Supplemental Material, “Testing Datasets and
Results” zip file) suggest that data sets with three dose groups
can be adequately fit by the four-parameter models, but the var-
iance of the posterior sample of model parameters (and further,
the variance of the BMD estimates) may be affected. With respect
to run time, the mean and 95th percentile interval of running time
to fit all eight models to the testing data sets are 16.6 (12.5–46.1)
seconds for dichotomous data and 28.2 (11.2–51.9) seconds for
continuous data, using default settings. The run time is sensitive to
the length of the MCMC chain and the number of chains, although
run time estimates may vary depending on hardware.

Test data sets, BMD analysis results on the test data sets for
both BMDS and BBMD, and additional BBMD results (including
model-specific results on PPP value, BMD/BMDL estimates,
model parameter estimates, and convergence of MCMC sam-
pling) are provided in the results package (see Supplemental
Material, “Testing Datasets and Results” zip file). Files included
in the “Testing Datasets and Results” zip file are listed and
described in Appendix 2.

Discussion
Compared with BMDS, the BBMD system generally provides
fewer failed BMD and BMDL estimates. The Hill model failed
for BBMD in only one case. This failure is primarily due to the
plateau feature of the Hill model, that is to say, the shape of the
Hill curve in the high-dose range may reach a response plateau;
in other words, the response may reach a maximum value. If the

Table 3. Analytics on the of effective sample size and bR (indicating the convergence of MCMC sampling).

Model

Minimum effective
sample size, default setting

Mean (95% CI)

Default setting Customized MCMC length
Percent of data
set with bR ≤ 1:01

97.5th percentile
of bR Percent of data set

with bR ≤ 1:01
97.5th percentile

of bR
Quantal-Linear 7,613 (1,758, 12,277) 99.8 1.0011 100 1.0008
Logistic 3,310 (220, 7,632) 97.9 1.0075 99.8 1.0036
Probit 3,423 (68, 7,274) 97.1 1.0106 97.7 1.0084
Weibull 2,054 (379, 8,233) 99.2 1.0051 99.2 1.0056
Multistage 2 5,104 (491, 9,346) 99.4 1.0026 99.2 1.0030
LogLogistic 1,745 (359, 6,687) 99.2 1.0066 99.4 1.0065
LogProbit 1,448 (135, 6,847) 96.1 1.0137 96.3 1.0133
Dich Hill 829 (94, 1,819) 95.2 1.0152 94.4 1.0196
Linear 8,012 (3,515, 13,671) 100 1.001 100 1.0009
Power 2,345 (520, 9,280) 99.1 1.0055 98.1 1.0048
Michaelis-Menten 1,697 (223, 5,378) 99.1 1.0080 98.1 1.0086
Hill 541 (31, 2,198) 76.9 1.0368 75.9 1.0655
Exponential 2 8,048 (4,845, 9,687) 100 1.0009 100 1.0007
Exponential 3 2,159 (519, 9,203) 100 1.0052 99.1 1.0080
Exponential 4 1,440 (6, 8,068) 75 1.1938 79.6 1.3737
Exponential 5 478 (14, 1,653) 75.9 1.1231 73.1 1.1128

Note: CI, confidence interval; MCMC, Markov chain Monte Carlo. The highest bR of the parameters in each model is used to calculate the percentage of the data sets with bR ≤ 1:01
and the 97.5th percentile of bR for the model.
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maximum response is smaller than the specified BMR (e.g., a
10% increase of the control response), then the BMD cannot be
estimated given the BMR as 10% relative change. This failure
can be avoided by changing the BMR to a smaller number (e.g.,
1% relative change). In BMDS, the same data set did not provide
BMD (or BMDL) estimates owing to an insufficient number of
dose groups for the Hill model. Except for this single data set
failure, the BBMD system successfully estimated the BMD and
the BMDL for all testing data sets, demonstrating the robustness
of the BBMD system.

With respect to the BMDL estimation, BBMD overall gener-
ated smaller BMD/BMDL ratios for most models and data sets
compared with BMDS. For some of the simpler models (includ-
ing the Quantal-linear, Linear, and Exponential 2 models), the
two systems were in good accord on the ratios. However, differ-
ences were observed with a smaller BMR of 1% for the Logistic
and Probit models. BMDS generated much higher BMD/BMDL
ratios when compared with other two-parameter models, and it
generated some errors in BMDL calculations for the Logistic
model and the Linear model. For models with three or more pa-
rameters, BMD/BMDL ratios generated by BMDS were consis-
tently larger than their counterparts calculated by BBMD (with
the exception of the Dichotomous Hill model, as described later),
including some extreme values in the Hill model, even though
those models may have been reduced to a simpler form in
BMDS. These high BMD/BMDL ratios may be related to the dis-
advantage of the profile likelihood method in BMDL estimation
described by Moerbeek et al. (2004). The Dichotomous Hill
model was the only model that had higher BMD/BMDL ratios in
BBMD than in BMDS. This may be because a) there were 186
additional data sets that were fit in BBMD but not in BMDS
(these data sets had three dose groups and therefore could not be
fit in BMDS); and b) the Dichotomous Hill model was reduced
to a simpler form in BMDS in 124 out of the remaining 332
data sets. Although the convergence indicator, bR, and the dose–
response plots in the results package (see Supplemental Material,
“Testing Datasets and Results” zip file) show that BBMD can
plausibly fit the four-parameter Dichotomous Hill model to three-
dose data sets, this finding suggests that users should give extra
attention to the BMDL generated by BBMD in such situations.

PCCs were calculated to examine the similarity between
model estimates from the two systems. The PCC was very close
to 1 for the two-parameter models, and higher than 0.8 for almost
all of the models with three or four parameters. Similarly, the ra-
tio of BMD estimates (BBMD estimates over BMDS estimates)
and the ratio of BMDL estimates for the two-parameter models
varied around 1. Both pieces of evidence indicate that the two-
parameter models perform similarly in both systems. For other
models, the median values of the ratios were all within the range
of 0.5 to 2, and most were between 0.8 and 1.6. Except for some
extremely large ratios in the Hill, Exponential 4, and Exponential
5 models that were mainly caused by the very low BMDL esti-
mates generated in BMDS, most ratios were within the range of
30-fold. We also used linear regression plots to graphically show
some outliers of these estimates (see Figures S7–S36). It is worth
noting that the estimated parameters in the linear regression
should be carefully used to judge equality between the estimates
from the two systems because they are very sensitive to out-
liers. Large differences in BMD or BMDL estimates can have
many causes, including the automatic model format simplifica-
tion in BMDS and the difference between the profile likelihood
estimation method and the MCMC approach for BMDL estima-
tion. Model reduction in BMDS was observed frequently in the
Weibull, LogLogistic, LogProbit, and Dichotomous Hill models
in BMDS because they tend to exactly fit the response rate at the

control dose group if it is 0. Overall, 226 (out of 518) Weibull
models, 234 (out of 518) LogLogistic models, 214 (out of 518)
LogProbit models, and 144 (out of 332) Dichotomous Hill mod-
els had a background parameter estimated to be exactly 0. To
enforce fitting the curve to pass the 0 response at control can
make the BMD estimate either high or low depending on the
shape of the curve determined by the remaining dose groups. In
contrast, an exact fit at 0 cannot occur in the MCMC sampling
process because of its probabilistic nature. Additionally, in
BBMD, a uniform distribution between 0 and 1 is employed as
the prior for the background parameter (i.e., parameter “a” of the
models in Appendix 1), so that it is not informative for the
MCMC sampling to search for the optimal range for the parame-
ter. Given these differences in the settings and nature of the
methods between BBMD and BMDS, dose–response models in
the two systems may show quite different performance in the
low-dose range, causing a difference of more than one order of
magnitude in the BMD estimates. A simulation study will be
conducted to more comprehensively evaluate the two systems on
BMD estimation.

The results summarized in Table 3 suggest that simply
increasing the number and length of the chains may not necessar-
ily guarantee better convergence. In addition, an bR value >1:01
or even >1:05 should not disqualify the posterior sample from
being used in a BMD analysis. It is possible that, owing to the
features of a particular data set, not all bR values for a dose–
response model can be <1:01. Therefore, it is important to use
multiple criteria (such as visual inspection of the dose–response
plot) to judge if the posterior sample can be properly used.

In addition to the uniform priors, we also tested using normal
distributions with large variance [i.e., N ∼ ð0, 1,0002Þ] as priors
for model parameters. These normal distributions were truncated
so that they had the same lower and upper bound as the uniform
priors. The results show that the parameter and BMD estimates
from these two different sets of priors were nearly identical. The
purpose of using another set of flat priors was not to propose
another option for priors but to verify that the uniform priors in
the system were appropriate flat priors and not sensitive to the
distribution type. A key advantage of Bayesian methods over fre-
quentist methods is the incorporation of prior information on
model parameters and model weight. Using adequate informative
priors is challenging but provides a great opportunity to utilize
the prior information to make the dose–response analysis more
reliable. In the example presented in “The Impact of Generalized
Informative Prior on BMD Estimation” in the Supplemental
Material (see also Figures S3–S6), we used the Loglogistic model
to show how an informative prior derived from real toxicological
data may affect model fitting and BMD estimation. It is important
to note that different priors can result in different inferences.

Rarely, the BBMD system may fail during MCMC sampling
in an analysis; in some cases, changing the random seed used in
sampling is one possible solution. However, a more fundamental
solution is to use more appropriate prior distribution and/or initial
values for model parameters, which is our next major task in de-
velopment. We also noted that some data sets can be successfully
analyzed by the BBMD system but not by the BMDS. For exam-
ple, the Multistage 2 model in the BMDS failed to properly fit
data sets number 35 and number 36 in the dichotomous data (see
Testing Data_Dichotomous.csv in the “Testing Datasets and
Results” zip file), but the Multistage 2 curves fitted in BBMD
seem very reasonable.

Conclusion
BBMD is a Bayesian and probabilistic benchmark dose modeling
software system with many advanced features for BMD
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estimation, including functionalities to estimate model-averaged
BMD and “hybrid” approach BMD. BBMD can provide proba-
bilistic estimates for important quantities of interest in dose–
response assessment, which greatly facilitates the current need for
conducting probabilistic risk assessment. In the next phase of sys-
tem development, we will conduct research on eliciting informative
model parameter priors so that more appropriate priors can be
implemented to increase the reliability and robustness of the system.
Additionally, the outcomes from the system can be directly used for
computing the probabilistic reference dose (or “target human dose”)
under the framework proposed by Chiu and Slob (2015) and the
International Programme on Chemical Safety (IPCS) (2014). Other
future areas of research and development include simulating low-
dose extrapolation via Monte Carlo simulation.

Appendix 1
Dose–response models for dichotomous data:

1. Quantal-linear model: f ðdÞ= a+ð1−aÞ× ½1−expð−b×dÞ�,
0≤a≤1, b≥0

2. Probit model: f ðdÞ=U ða+ b× dÞ, b≥ 0
3. Logistic model: f dð Þ=1= 1+ expð− a− b× dÞ½ �, b≥ 0
4. Weibull model: f ðdÞ= a+ ð1− aÞ× ½1− exp ð−b× dgÞ�,

0≤ a≤ 1, b≥ 0, g≥ restriction
5. Multistage (2nd degree) model: f ðdÞ= a+ ð1− aÞ×

½1− exp ð−b× d− c× d2Þ�, 0≤ a≤ 1, b≥ 0 , c≥ 0
6. LogLogistic model: f dð Þ= a+ 1− að Þ= 1+ exp½− b− g×

	�
logðdÞ�g�, 0≤ a≤ 1, g≥ restriction

7. LogProbit model: f ðdÞ= a+ ð1− aÞ×U ½b+ g× log ðdÞ�,
0≤ a≤ 1, g≥ restriction

8. Dichotomous Hill model: f dð Þ= a×b+ a− a× bð Þ= 1+f�
exp½− c− g× logðdÞ�g�, 0< a≤ 1, 0< b<1, g≥ restriction

Dose–response models for continuous data:
1. Linear model: f ðdÞ= a+ b× d, a>0
2. Power model: f ðdÞ= a+ b× dg, a>0, g≥ restriction
3. Michaelis-Menten model: f dð Þ= a+ b×dð Þ= c+dð Þ� �

, a>0,
c>0

4. Hill model: f dð Þ= a+ b× dgð Þ= cg + dgð Þ� �
, a>0, c>0,

g≥ restriction
5. Exponential 2 model: f ðdÞ= a× exp ðb× dÞ, a>0
6. Exponential 3 model: f ðdÞ= a× exp ðb× dgÞ, a>0,

g≥ restriction
7. Exponential 4 model: f ðdÞ= a× ½c−ðc−1Þ×expð−b×dÞ�,

a>0, b>0, c>0
8. Exponential 5 model: fðdÞ= a×½c−ðc−1Þ×exp�−ðb×dÞg��,

a>0, b>0, c>0, g≥restriction
Note: parameter “a” in the dose–response models above gen-

erally represents the response at background dose level, and pa-
rameter “g” is a power parameter on the dose. Parameter “b” is
the potency parameter in most cases, but parameter “c” may
have different meanings in different models; “d” represents
dose, which is an independent variable in these dose-response
models.

Appendix 2
The detailed analysis results included in the results package zip
file contain:

1. “Testing Data_Continuous.csv” and “Testing Data_
Dichotomous.csv” contain testing data sets for continuous
data and dichotomous data, respectively;

2. “BBMD_Results_Continuous Data.csv” and “BBMD_
Results_Dichotomous Data.csv” contain BBMD-generated
BMD estimates from eight continuous models and eight di-
chotomous models, respectively. For each model, the PPP

value, model weight, and BMD and BMDL values based on
various BMD definitions are reported.

3. “BMDS_Results_Continuous Data.csv” and “BMDS_
Results_Dichotomous Data.csv” contain BMDS generated
BMD estimates from seven continuous models and eight
dichotomous models, respectively. For each model, the p-
value, the AIC value, and BMD and BMDL values based
on various BMD definitions are reported.

4. Sixteen zip files are included. Each zip file contains one csv
file (which reports PPP value, BMD and BMDL estimates,
model parameter estimates, and convergence indicator bR
of MCMC sampling, effective sample size, minimum tree
depth achieved, maximum tree depth achieved, maximum
tree depth allowed, and number of divergence steps), and
dose–response plots for all testing data sets.
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